Search results

1 – 7 of 7
Article
Publication date: 23 June 2021

Jiehao Li, Shoukun Wang, Junzheng Wang, Jing Li, Jiangbo Zhao and Liling Ma

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the…

Abstract

Purpose

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the payload simultaneously, especially for the cloud robot system. In this paper, a flexible trajectory tracking control scheme is developed via iterative learning control to manage a distributed cloud robot (BIT-6NAZA) under the payload delivery scenarios.

Design/methodology/approach

Considering the relationship of six-wheeled independent steering in the BIT-6NAZA robot, an iterative learning controller is implemented for reliable trajectory tracking with the payload transportation. Meanwhile, the stability analysis of the system ensures the effective convergence of the algorithm.

Findings

Finally, to evaluate the developed method, some demonstrations, including the different motion models and tracking control, are presented both in simulation and experiment. It can achieve flexible tracking performance of the designed composite algorithm.

Originality/value

This paper provides a feasible method for the trajectory tracking control in the cloud robot system and simultaneously promotes the robot application in practical engineering.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 October 2021

Yingpeng Dai, Junzheng Wang, Jiehao Li and Jing Li

This paper aims to focus on the environmental perception of unmanned platform under complex street scenes. Unmanned platform has a strict requirement both on accuracy and…

Abstract

Purpose

This paper aims to focus on the environmental perception of unmanned platform under complex street scenes. Unmanned platform has a strict requirement both on accuracy and inference speed. So how to make a trade-off between accuracy and inference speed during the extraction of environmental information becomes a challenge.

Design/methodology/approach

In this paper, a novel multi-scale depth-wise residual (MDR) module is proposed. This module makes full use of depth-wise separable convolution, dilated convolution and 1-dimensional (1-D) convolution, which is able to extract local information and contextual information jointly while keeping this module small-scale and shallow. Then, based on MDR module, a novel network named multi-scale depth-wise residual network (MDRNet) is designed for fast semantic segmentation. This network could extract multi-scale information and maintain feature maps with high spatial resolution to mitigate the existence of objects at multiple scales.

Findings

Experiments on Camvid data set and Cityscapes data set reveal that the proposed MDRNet produces competitive results both in terms of computational time and accuracy during inference. Specially, the authors got 67.47 and 68.7% Mean Intersection over Union (MIoU) on Camvid data set and Cityscapes data set, respectively, with only 0.84 million parameters and quicker speed on a single GTX 1070Ti card.

Originality/value

This research can provide the theoretical and engineering basis for environmental perception on the unmanned platform. In addition, it provides environmental information to support the subsequent works.

Details

Assembly Automation, vol. 41 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 March 2023

Xin Zhao, Jie Li, Shunli Sun, Chongyang Han, Wenbo Zhu, Zhaokai He, Luxin Tang, Weibin Wu and Jiehao Li

Vehicle lightweight design has positive implications for reducing energy consumption and abating greenhouse gas emissions. The traditional trailer axle design mainly focuses on…

Abstract

Purpose

Vehicle lightweight design has positive implications for reducing energy consumption and abating greenhouse gas emissions. The traditional trailer axle design mainly focuses on the overall performance of the trailer axle. Only when the local performance does not meet the requirements will local performance optimization be done, such as local heat treatment to improve local strength. Such a design results in an uneven distribution of axle performance and excess performance in some local structures. The purpose of this study is to investigate the weight reduction on the premise of ensuring the structural dimensions of the outer surface of the axle remain unchanged and the reliability of the axle.

Design/methodology/approach

The axle is parameterized by computer aided design, and the optimized axle finite element model based on computer aided engineering is established and verified by taking the eight dimensions of the axle cavity structure which affect the performance as parameters. A genetic algorithm is used to optimize the axle cavity structure size and axle weight based on multiobjective optimization, and eight optimized size parameters of axle cavity structure are obtained.

Findings

The total weight of the optimized axle of TM1314 is reduced by 10.2 kg, and the weight reduction ratio reaches 10.7%. According to the optimized structural size of the axle, the specimen was trial-manufactured, and the bench tests of stiffness, strength and fatigue life were carried out according to the test requirements of the trailer axle standard (JT/T 475-2002). The test results show that the maximum deformation of the specimen is 2.46 mm, the strength safety factor of the specimen body and the steel plate spring seat are 6.71 and 6.86 and bear the alternating load more than 1.05 × 106 times, which meets the standard of the trailer axle and is better than the original design requirements of the trailer axle.

Originality/value

In this study, the multiobjective optimization model of the axle is established, the response surface is constructed by the Latin hypercube sampling design method and the optimal solution set is obtained by the multiobjective genetic algorithm. It has been verified by bench tests that it can achieve a weight reduction of 10.7% under the premise of the same structure and size of the outer surface of the axle. The lightweight method based on multiobjective optimization proposed in this paper can provide a reference for the lightweight design of other key vehicle components.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 April 2022

Yingpeng Dai, Jiehao Li, Junzheng Wang, Jing Li and Xu Liu

This paper aims to focus on lane detection of unmanned mobile robots. For the mobile robot, it is undesirable to spend lots of time detecting the lane. So quickly detecting the…

Abstract

Purpose

This paper aims to focus on lane detection of unmanned mobile robots. For the mobile robot, it is undesirable to spend lots of time detecting the lane. So quickly detecting the lane in a complex environment such as poor illumination and shadows becomes a challenge.

Design/methodology/approach

A new learning framework based on an integration of extreme learning machine (ELM) and an inception structure named multiscale ELM is proposed, making full use of the advantages that ELM has faster convergence and convolutional neural network could extract local features in different scales. The proposed architecture is divided into two main components: self-taught feature extraction by ELM with the convolution layer and bottom-up information classification based on the feature constraint. To overcome the disadvantages of poor performance under complex conditions such as shadows and illumination, this paper mainly solves four problems: local features learning: replaced the fully connected layer, the convolutional layer is used to extract local features; feature extraction in different scales: the integration of ELM and inception structure improves the parameters learning speed, but it also achieves spatial interactivity in different scales; and the validity of the training database: a method how to find a training data set is proposed.

Findings

Experimental results on various data sets reveal that the proposed algorithm effectively improves performance under complex conditions. In the actual environment, experimental results tested by the robot platform named BIT-NAZA show that the proposed algorithm achieves better performance and reliability.

Originality/value

This research can provide a theoretical and engineering basis for lane detection on unmanned robots.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 August 2022

Jianbin Xiong, Jinji Nie and Jiehao Li

This paper primarily aims to focus on a review of convolutional neural network (CNN)-based eye control systems. The performance of CNNs in big data has led to the development of…

Abstract

Purpose

This paper primarily aims to focus on a review of convolutional neural network (CNN)-based eye control systems. The performance of CNNs in big data has led to the development of eye control systems. Therefore, a review of eye control systems based on CNNs is helpful for future research.

Design/methodology/approach

In this paper, first, it covers the fundamentals of the eye control system as well as the fundamentals of CNNs. Second, the standard CNN model and the target detection model are summarized. The eye control system’s CNN gaze estimation approach and model are next described and summarized. Finally, the progress of the gaze estimation of the eye control system is discussed and anticipated.

Findings

The eye control system accomplishes the control effect using gaze estimation technology, which focuses on the features and information of the eyeball, eye movement and gaze, among other things. The traditional eye control system adopts pupil monitoring, pupil positioning, Hough algorithm and other methods. This study will focus on a CNN-based eye control system. First of all, the authors present the CNN model, which is effective in image identification, target detection and tracking. Furthermore, the CNN-based eye control system is separated into three categories: semantic information, monocular/binocular and full-face. Finally, three challenges linked to the development of an eye control system based on a CNN are discussed, along with possible solutions.

Originality/value

This research can provide theoretical and engineering basis for the eye control system platform. In addition, it also summarizes the ideas of predecessors to support the development of future research.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 July 2020

Jiehao Li, Junzheng Wang, Shoukun Wang, Hui Peng, Bomeng Wang, Wen Qi, Longbin Zhang and Hang Su

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory…

Abstract

Purpose

This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory tracking and stable operation with heavy load are the main challenges of parallel mechanism for wheel-legged robots, especially in complex road conditions. To guarantee the tracking performance in an uncertain environment, the disturbances, including the internal friction, external environment interaction, should be considered in the practical robot system.

Design/methodology/approach

In this paper, a fuzzy approximation-based model predictive tracking scheme (FMPC) for reliable tracking control is developed to the six wheel-legged robot, in which the fuzzy logic approximation is applied to estimate the uncertain physical interaction and external dynamics of the robot system. Meanwhile, the advanced parallel mechanism of the electric six wheel-legged robot (BIT-NAZA) is presented.

Findings

Co-simulation and comparative experimental results using the BIT-NAZA robot derived from the developed hybrid control scheme indicate that the methodology can achieve satisfactory tracking performance in terms of accuracy and stability.

Originality/value

This research can provide theoretical and engineering guidance for lateral stability of intelligent robots under unknown disturbances and uncertain nonlinearities and facilitate the control performance of the mobile robots in a practical system.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 7 of 7